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ABSTRACT
Generating synthetic social networks is an important task for many
problems that study humans, their behavior, and their interac-
tions. Geosocial networks enrich social networks with location
information. Commonly used models to generate synthetic social
networks include the classical Erdős-Rényi, Barabási-Albert, and
Watts-Strogatz models. However, these classic social network mod-
els do not consider the location of individuals. Real-world geosocial
networks do exhibit a strong spatial autocorrelation, thus having a
higher likelihood of a social connection between agents that are
spatially close. As such, recent variants of the three classical models
have been proposed to consider location information. Yet, these
existing solutions assume that individuals are located on a uniform
lattice and exhibit certain limitations when applied to real-world
data that exhibits clusters. In this work, we discuss these limitations
and propose new approaches to extend the three classic social net-
work generation models to geosocial networks. Our experiments
show that our generated synthetic geosocial networks address the
shortcomings of the state-of-the-art models and generate realis-
tic geosocial networks that exhibit high similarity to real-world
geosocial networks.
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Figure 1: Real- World Geosocial Network using Facebook
Social Connectedness Data between Zone Improvement Plan
(ZIP) Region Centroids for the State of Virginia, USA.

1 INTRODUCTION
Geosocial networks [5] (often also called location-based social net-
works [26]) capture both 1) social relationships such as friendship
between individuals or populations, and 2) the location of these
individuals or populations and their interactions. An example of
a real geosocial network is shown in Figure 1 showing the loca-
tion of ZIP code population centroids that are linked based on the
strength of their social connectedness. This network is generated
using the Facebook Social Connectedness Index [4]. Such networks
are often used to improve the realism of models where social inter-
actions are of importance, such as agent-based models. For example,
geosocial networks have been used in disease modeling [11, 15],
urban planning [10, 16], and marketing [23]. However, research on
geosocial networks is limited due to the absence of comprehensive
and accurate social network datasets. Publicly available real-world
datasets only capture a small fraction of the population [21]. The
authors of [20] even conclude that "researchers working with LBSN
[Location-Based Social Network] datasets are often confronted by
themselves or others with doubts regarding the quality or the po-
tential of their data sets." Therefore, synthetic social networks are
often used in models, and the more realistic these synthetic social
networks are the more realistic these models will be. To generate
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synthetic geosocial networks, existing work leverages geosimula-
tion to create a digital twin of a real urban environment and uses
co-location between simulated agents [12, 18, 19]. However, such
simulation approaches requires a large computational overhead to
simulate entire cities.

In terms of synthetic (non-geo) social networks, there are three
classical models for generating them: the Erdős-Rényi [9], Barabási-
Albert [7], and Watts-Strogatz [24] models. From these classical
models, different network structures with properties that can some-
times reflect real observed networks emerge. However, real net-
works and the dynamics that drive their formation and evolution
are embedded within geographic space. Thus, without using loca-
tion information, we would argue that these classical models can
not generate realistic geosocial networks. Methods to improve these
classical models have been introduced, such as using geographic
coordinates to inform the way nodes in the network connect (link)
to one another [1]. However, these methods place nodes randomly
or uniformly in geographic space and have not been tested with
real-world geospatial data to inform the position of nodes. One
could consider this as a drawback, as real-world data capturing
the location of populations exhibits spatial heterogeneity where
some locations have dense clusters of nodes and others that are
sparse [3]. Such heterogeneity is one of the aspects making spatial
data special [2].

In this paper, we demonstrate the shortcomings of these existing
models and propose algorithms to generate new spatial versions
of these three classical models that can be applied to create social
networks between vertices having real-world locations. We com-
pare each of these three networks to their non-spatial counterpart,
which does not take distance into account when generating the con-
nections. We also compare the generated networks to real-world
networks generated frommobility data [17] and Facebook user data
to show that our synthetically generated social networks are, to
some degree, similar to real-world geosocial networks.

The main contribution of this work is the introduction of three
geosocial variants of the three classic synthetic social network
generation models with the goal of realistically including location
information in the social link generation process. Specifically, these
three models are:

• A Geosocial Erdős-Rényi model In the classical Erdős-
Rényi network [9], each node in the network has a constant
probability 𝑝 of connecting to every other node in the net-
work. In the proposed spatial version of this network, the
probability that two nodes will connect is not constant, but
determined by the distance between the two nodes, using
a power law equation following prior work: (𝑠𝑑)−𝛼 where
𝑠 is a scaling factor, 𝑑 is the distance between nodes, and
𝛼 is a distance-decay exponent set by the user. The scaling
factor was introduced to accommodate for real-world data
that may measure distance in different scales and different
spaces such as (latitude, longitude) coordinates or absolute
coordinates in meters.

• AGeosocial Barabási-AlbertmodelThe classical Barabási-
Albert model [7] starts with a clique (a fully connected graph)
of𝑚 nodes, which are connected to each other. Then, addi-
tional nodes are added by randomly connecting them to the

nodes already in the network. Thus, nodes in the starting
clique and nodes inserted early end up with a higher degree.
The likelihood of making a connection is multiplied by the
degree of the selection node. This leads to nodes with higher
degrees having more connections, a mechanism known as
preferential attachment [22]. The proposed spatial version of
this network also starts with a clique of𝑚 nodes and nodes
are then added one by one. When nodes are added, the like-
lihood of making a connection is based on the power law
equation that is used in the geosocial Erdős-Rényi network.
In addition, instead of processing nodes in an arbitrary or-
der, our model adds nodes in a spatial order by iteratively
adding nodes by order of increasing distance to the centroid
of already added nodes.

• A Geosocial Watts-Strogatz model The classical Watts-
Strogatz model [24] starts with each node connected to its
𝑘 nearest neighbors on a random lattice. Each node has
a constant probability of “rewiring” to another randomly
chosen node. We propose two different geosocial variants
using location to different degrees. In both models, each node
starts connected to its 𝑘 nearest neighbors in the location
space (rather than a random lattice), but the rewiring is done
using two different variants: 1) having a rewiring probability
determined by the distance between the two nodes, and 2)
having a rewiring probability using a constant parameter. In
both models, the new node selected for rewiring is chosen
based on the power law used in the geosocial Erdős-Rényi
model.

The remainder of this work is organized as follows. Section 2
provides details of the three classic models for synthetic social
network generation, their spatial extensions, and the shortcomings
of these models. Section 3 then presents our proposed geosocial
network generation of the classic models that control for the spatial
heterogeneity of the location of nodes. Our experimental evaluation
is found in Section 4 showing both qualitative and quantitative
experiments to support our claims that our proposed synthetic
geosocial network generation algorithms yield realistic (similar
to real-world) social networks. Finally, Section 5 provides a brief
conclusion to the paper and a discussion of areas of further work.

2 RELATEDWORK
Following our brief introduction in Section 1, this section provides
an overview of the three classical synthetic social network mod-
els and spatial versions of these network models that have been
proposed.

2.1 The Erdős-Rényi Model
The Erdős-Rényi model [9] is a randomly generated model. Each
edge is only included in the graph based on a chosen probability.
Edges are chosen independently of other edges and nodes. Typically,
the Erdős-Rényi model is generated by looping through every edge
pair between every node, choosing a randomprobability 𝑝𝐸𝑟𝑑𝑜𝑠 , and
adding the edge only if the random probability is below a certain
threshold established beforehand. Figure 2a shows an example
Erdős-Rényi graph with 200 nodes and an average degree of ten. In
all of the graphs, each node is randomly assigned an x coordinate



Synthetic Geosocial Network Generation LocalRec ’23, November 13, 2023, Hamburg, Germany

(a) Classical Erdős-Rényi network (b) Classical Barabási-Albert network (c) Classical Watts-Strogatz network

(d) Spatial Erdős-Rényi network (e) Spatial Barabási-Albert network (f) Spatial Watts-Strogatz network

Figure 2: Graphs generated from the classical models and the spatial models proposed in [1]

from 0 to 9, and a y coordinate from 0 to 19. In order to compare the
graphs visually, all of the graphs have the same layout, where the
nodes, in blue, are arranged in a rectangular layout. Additionally, all
of the graphs have a similar number of edges. For the Erdős-Rényi
graph, no identifiable clusters or communities are visible. This is to
be expected, as in this model, two nodes have the same likelihood
of being connected. While the area in the center of the network
appears darker, this is not due to denser connections but due to fact
that many edges are crossing the entire network.

2.2 The Spatial Erdős-Rényi Model
The spatial version of the Erdős-Rényi model that has been pro-
posed [1] does not use a predetermined consent probability to
determine whether two nodes connect, but instead calculates a
probability based on the distance between those two nodes. The
model initializes a number of nodes, and assigns them Cartesian
coordinates. For each possible connection between two nodes, the
probability of connection is calculated using a power law equation:
𝑝 (𝑑) = 𝐶𝑑−𝛼 . Here, 𝑑 is the distance between two nodes, and 𝛼

is a distance-decay exponent set beforehand. 𝐶 is a normalizing
coefficient calculated by dividing 1 − 𝛼 by the difference of the
minimum distance raised to 1−𝛼 and the maximum distance raised
to 1−𝛼 .𝐶 is also included in the power law equations for the Watts-
Strogatz and Barabási-Albert networks included in [1], but in the
code for that paper it is not included, so we do not include 𝐶 when
discussing or generating the spatial Watts-Strogatz and Barabási-
Albert networks. If the probability of connection is greater than a
randomly generated number, then an edge is drawn between those
two nodes. Figure 2d shows a spatial Erdős-Rényi graph. Despite

having the same number of edges, this graph appears less “dark”
than the graph resulting from the classical model in Figure 2a. This
is to be expected as the nodes are more likely to connect to nodes
that are close, leading to shorter lines and more white space in the
visualization. Still, this model does not exhibit any spatial cluster-
ing as all nodes are located in regions of equal density of nodes
(except for border effects). When applying the spatial Erdős-Rényi
model proposed in [1] to Virginia ZIP code data, the resulting graph
as shown in Figure 3a having a large number of edges in dense
regions of highly-populated areas where the distances between ZIP-
code centroids are small. However, in sparsely populated regions
where the distances between ZIP code centroids are large, almost no
connections are made. Since the model originally assumes that all
locations are located on a uniform grid, the model does not specify
a parameter to account for differences in the density of locations.

A different variant of a spatially-aware version of the Erdős-
Rényi model has been proposed in [25] using a constant threshold
𝐻 (called neighborhood radius). Instead of giving each pair of ver-
tices the same probability 𝑝 of being connected, this model uses a
probability 𝑝1 for pairs of vertices having a spatial distance less or
equal to 𝐻 and a probability 𝑝2 < 𝑝1 for pairs of vertices having a
distance larger than 𝐻 . In practice, however, it is difficult to define
a single such threshold. Thus, a continuous function that maps
distance (between two vertices) to a probability of being connected
as proposed in [1] and also adopted in this work is preferable.

2.3 Barabási-Albert
The Barabási-Albert model [7] is a randomly generated model that
follows a power law in the distribution of the number of edges
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(a) Spatial Erdős-Rényi Network with Virginia
ZIP code data

(b) Spatial Watts-Strogatz Network with Vir-
ginia ZIP code data

Figure 3: Graphs generated using the code from [1] implemented with Virginia ZIP code data

per node. The Barabási-Albert model helps explain networks such
as the World Wide Web and social networks [6]. To do this, the
model utilizes preferential attachment. Nodes are added to the
network iteratively and are more likely to connect to nodes with a
higher number of edges. This model aims to create a network where
there are few nodes with many connections and a large number of
nodes that are sparsely connected. Figure 2b depicts a generated
Barabási-Albert network. The typical Barabási-Albert structure can
be observed, with some nodes having a high number of connections,
but most having only a few connections.

2.4 The Spatial Barabási-Albert Model
The proposed spatial version of the Barabási-Albert model [1] starts
with a clique with𝑚 number of nodes, and adds nodes iteratively.
The first node that is added is connected to each of the starting𝑚
nodes. Each node that is added afterwards selects an𝑚 number of
nodes from the existing network to connect to. Nodes are chosen
randomly, and the probability of connection is calculated using a
variation of the power law equation used for the Erdős-Rényi and
Watts-Strogatz models, 𝑝 (𝑑) = 𝑘𝑑−𝛼 .𝑑 and 𝛼 are once again the dis-
tance between nodes and the distance-decay exponent respectively.
𝑘 is the degree of node that is being considered for connection. If
a randomly generated probability is less than the calculated prob-
ability and the two nodes are not already connected, an edge is
made between those two nodes. Once the original node creates m
number of edges, another node is added to the network and the
process is repeated until the desired population number is reached.
Figure 2e shows the spatial version of the Barabási-Albert network.
Highly connected nodes can be seen, and there is more white space
in this graph than in many of the others. This is due to the short
length of edges, which is a result of nodes prioritizing connections
to other nodes that are spatially close. When incorporating Vir-
ginia ZIP code data into the spatial Barabási-Albert network, the
model does not terminate. This is caused by nodes located in sparse
regions having a very low spatial density of nodes. For any such
node, the likelihood of creating an edge will be very low, even for
the nearest node, due to the exponential decay of probability in
distance. For such nodes, the algorithm keeps attempting to create
edges but keeps failing due to having a probability of succeeding of
almost zero. This problem of non-termination was not evident in

the experiments performed in [1] as this work assumes nodes to be
located on a random lattice. Thus, the distances between nodes does
not vary in these experiments. But using real-world data, we have
both dense and sparse regions. Our proposed approach will account
for these differences in the density of nodes and the exponential
difference in resulting probabilities.

2.5 The Watts-Strogatz Model
The Watts-Strogatz model [24] is a randomly generated model that
exhibits small world properties. The network is initialized having
each node connected to a specified number of nearest neighbors.
In the original version of the model, because the network is not
spatially informed, its neighbors are not chosen spatially. Instead,
each node connects to a given number of the nodes that have a
similar identifier. For example, node #100 may be connected to
nodes #96 to #99 and nodes #101 to #104.

After these connections are initialized, each connection is iter-
ated through. For each node in the network, and for each connection
between that node and another, a random probability is generated,
and if this random probability is lower than a threshold parameter 𝑝
(the likelihood of rewiring), the original node is rewired to another,
randomly chosen node. Figure 2c shows a generated Watts-Strogatz
network having 𝑝 = 0.2. This was chosen so that on average one
of a node’s connections will be rewired, as this network has an
average degree of ten. Because the coordinates are random and the
nodes initially connect by identifier, it looks random and similar
to the Erdős-Rényi network. Much like the Erdős-Rényi network,
there is not much white space due to the long length of edges.

2.6 The Spatial Watts-Strogatz Model
Two spatial variations of the Watts-Strogatz network have been
proposed [1]. In both variations, nodes are initialized like in the
non-spatial Watts-Strogatz model using their nearest neighbors on
the (arbitrarily chosen and non-spatial) unique identifiers of nodes.
In the first version, each node and each connection to that node
is iterated through and the connection’s re-wiring probability is
calculated using the same power law equation used in the spatial
Erdős-Rényi network. Thus, distant nodes connected in the initial
network are more likely to be rewired than close nodes.
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Figure 4: A graph showing how distances is mapped to prob-
ability of connection for different alpha values.

The second variation also starts by iterating through each node
and their connection, but the probability that the node will rewire is
determined by a constant probability 𝑝 . The second node is chosen
based on the power law equation used in the first version of the
spatial Watts-Strogatz network. Thus, nodes are selected randomly
for rewiring, but the rewiring is based on distance. Figure 2f depicts
the first version of the spatial Watts-Strogatz network. The network
still appears to be random due to the random coordinates and
the initial connections that are made without considering spatial
distance similar to the nonspatial Watts-Strogatz graph and the
Erdős-Rényi graph. For both of the spatial Watts-Strogatz graphs,
when implementing Virginia Zip code data, because the nodes
initially connect based on unique identifiers, which in this case is
assigned ID numbers, and not location, the graph is very random
and is very dark due to the long edges that stretch across the graph,
which is shown in Figure 3b. No clustering can be identified in the
graph.

3 GEOSOCIAL SYNTHETIC SOCIAL NETWORK
GENERATION

As discussed in Section 2, existing solutions for spatial synthetic
network generation may lead to graphs that are very sparse, overly
dense, or may not produce any graphs due to non-termination.
The reason for these shortcoming is that the spatial models were
designed for cases where the locations of nodes are placed in geo-
graphic space, but abstractly on a uniform grid. But using real-world
locations such as locations of uses, buildings, ZIP codes or census
tracts, we may get more realistic geosocial networks.

In this section we propose three new approaches to generat-
ing realistic synthetic geosocial networks by allowing to integrate
real-world location data to represent the location of populations.
Section 3.1 describes our geosocial variant of the classic Erdős-
Rényi; Section 3.2 presents our geosocial variant of the classic
Barabási-Albert Model; and Section 3.3 introduces our geosocial
variant of the classic Watts-Strogatz model. In addition to the de-
scriptions found in this section, the interested reader may find
implementations and algorithms published on GitHub at https://
github.com/KetevanGallagher/Synthetic-Geosocial-Networks. We

do this not only to allow readers to replicate what we present here
but to extend what we have presented here if they see fit to do so.

3.1 A Geosocial Erdős-Rényi Model
In the power law equation used in the spatial versions of the Erdős-
Rényi Model (Section 2.2), each distance is raised to the power of
negative alpha, which gives the weight for each possible connection.
The spatial versions used random integer Cartesian coordinates
as the locations for each node, so there was not a wide range of
distances. However, when using longitude and latitude coordinates
as the locations for each node, many of the distances between nodes
are relatively small. This leads to very large probabilities of connec-
tions for those distances that are small, and very low probabilities
of connection for all other distances, which made the power law
equation ineffective. To combat this, a scaling factor was introduced.
The scaling factor is chosen by raising the smallest desired distance
to the power of -1. The distance between nodes is multiplied by
the scaling factor, which leads to a power law equation as such:
𝑝 (𝑑) = (𝑠𝑑)−𝛼 . Additionally, distances that are below the smallest
distance chosen are set to that distance, which solves an issue when
using the code and power law equation from [1], which is if there is
a wide range of distances, the weights for the larger distances could
become very small when compared to the smaller distances, leading
to a very sparse graph. In a more extreme example, if a distance is
zero, all of the weights for the other distances will approach infinity
and a network will not be generated. Figure 4 shows a graph of the
new power law equation for three different alpha values, where the
x-axis is the distance between nodes in meters and the y-axis is the
probability of connection generated from the power law equation.
Three different scaling factors were used for the three different
alpha values, and were chosen in order to make networks with
an average degree of 20 when used with Virginia ZIP code data.
Because distances that are less than the distance used for the scaling
factor are set to that distance, the power law equation results in
a probability of one for all of those distances. Distances greater
than the one chosen for the scaling factor will follow the power
law equation and the probability will decrease with respect to the 𝛼
value that is set. Figure 5a shows the geosocial Erdős-Rényi graph
using Virginia ZIP code data, where each node is the centroid for a
different ZIP code in Virginia. Upon visual inspection, we observe
that this graph exhibits a certain similarity to the real-world data
graph derived from Facebook Social Conectedness data depicted
in Figure 1. A main difference is that sparse regions (such as in
the west, on the left side of the network) have fewer connections
and gaps in the real-world geosocial network that are caused by
mountains are disregarded in this synthetic network. We note that
the former shortcoming may be addressed by calibration of the
distance-decay parameter 𝛼 , and the later may be addressed by
using a more sophisticated distance function that considers net-
work distance (instead of Euclidean distance) between two nodes
to account for barriers such as mountains and bodies of water. We
also observe that this model yields a geosocial network that is much
more similar to the real-world than the Spatial Erdős-Rényi model
proposed in [1] which is depicted in Figure 3a.

https://github.com/KetevanGallagher/Synthetic-Geosocial-Networks
https://github.com/KetevanGallagher/Synthetic-Geosocial-Networks
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(a) Geosocial Erdős-Rényi Network with Vir-
ginia ZIP code data

(b) Geosocial Barabási-Albert Network with
Virginia ZIP code data

(c) GeosocialWatts-Strogatz Networkwith Vir-
ginia ZIP code data

Figure 5: Geosocial graphs using Virginia ZIP code data

3.2 A Geosocial Spatial Barabási-Albert Model
When utilizing real-world data to inform the Barabási-Albert net-
work, the modified power law equation was also used, although
with the addition of a variable 𝑘 corresponding to the degree of the
node to which a connection is made: 𝑝 (𝑑) = 𝑘 (𝑠𝑑)−𝛼 . This gives
nodes with a higher degree a higher probability of connecting to
new nodes that are added to the network. In the Barabási-Albert
network, nodes are added iteratively, so a node order was imple-
mented to increase the likelihood that nodes will connect to those
that are near them. This is the same approach used by the spatial
Barabási-Albert network proposed in [1]. The difference proposed
by our version of a spatial Barabási-Albert is the order in which
nodes are processed. The model proposed in [1] adds nodes to the
network in arbitrary order (without considering location of the
nodes). This approach creates problems in the initial iterations,
where only very few nodes have been added to the network, and
thus, distances between these nodes may be very large. These large
distances yield exponentially low (in these distances) probabilities
of making connections, leading to exponentially large run-times
due to repeating attempts to connect until one of the corresponding
Bernoulli trials of making a connection succeeds. This methodol-
ogy also creates unrealistically large edges (i.e., connecting nodes
having a large distance) by forcing to connect randomly selected
nodes.

Our approach initially starts with a seed node chosen randomly
from the network (our experiments use the westernmost node).
Then, nodes are added iteratively using the node having the short-
est distance to the centroid of the nodes that have already been
added. This process repeats until all nodes have been added to the
list. Implementing this spatial node order substantially increases
the run-time, as nodes are more likely to connect to those that are
close to them and the number of nodes to connect to will be chosen
faster if the nodes available are close in distance. Another change
that was implemented to speed up the network generation was
normalizing the weights given from the power law equation. By
normalizing the probabilities of creating edges from a new node
to all existing nodes, we avoid a large number of low-probability
Bernoulli trials. Although the we cannot compare the run time of
the spatial Barabási-Albert network to the geosocial Barabási-Albert

as the spatial Barabási-Albert network does not terminate, we are
able to compare the run time of the geosocial Barabási-Albert with
and without the implementation of node order and normalizing
distances. Over twenty trials (repetitions) it took an average of
103.1283 seconds to generate the geosocial Barabási-Albert graph
without using the node order and normalizing distances. For the
geosocial Barabási-Albert graph that used node distances and nor-
malized distances, it took an average of 49.5471 seconds to generate
the graphs. Figure 5b shows the spatial Barabási-Albert graph with
Virginia ZIP code data. We again observe a certain similarity to the
real-world graph in Figure 1. We observe more links in the west
compared to the Erdős-Rényi model which is due to the (arbitrary)
choice of using the westernmost node as the seed node, thus having
nodes in the west added first and thus benefiting from the pref-
erential attachment (by having a chance to connect to all other
nodes).

3.3 A Geosocial Spatial Watts-Strogatz Model
In the spatial Watts-Strogatz network proposed in [1], nodes are
initially connected to their nearest neighbors based on arbitrary
order (without considering spatial information). This leads to much
spatial randomness in the network, and in fact both spatial and
non-spatial Watts-Strogatz networks look very similar to the (non-
spatial) Erdős-Rényi network because spatial information is not
used in the initialization of the nearest-neighbor lattice. The ap-
proach in [1] uses spatial information only for the rewiring.

Thus, in our version of the spatial Watts-Strogatz model, the
nearest neighbors that a node initially connects to are defined as
the nodes that have the shortest distances to that node. Figure 5c
shows this updated version of the spatial Watts-Strogatz network,
which also implements the same power law as the geosocial Erdős-
Rényi network. Compared to the network generated by the spatial
Watts-Strogatz model proposed in [1] and depicted in Figure 3b we
observe much more structure in this graph. There is also visible
clustering, which is not seen in the spatial Watts-Strogatz graph.
The edges are much shorter and an outline of the shape of Virginia
can be seen. The resulting network also visually resembles the
real-world geosocial network shown in Figure 1.
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Ground Classic Classic Classic Spatial Spatial Geosocial Geosocial Geosocial KNN
Truth ER BA WS ER WS ER BA WS

Avg. Degree 19.59 19.78 19.84 19.77 2.94 20.00 20.05 19.73 20.00 20.00
Std. Dev. Degree 3.40 3.83 18.49 2.70 4.29 1.37 14.70 5.06 4.36 4.50
Max. Degree 32.00 32.60 163.25 29.40 22.55 25.00 69.40 37.50 33.90 34.00

Radius of Gyration 55292 513022 489469 509785 12539 510990 87529 133198 68856 37152
Std. Dev Radius of Gyration 51072 132646 134790 132887 23579 130288 67073 107183 64809 15330

Avg. Length of Edge 20934 206714 208432 201354 7739 188125 18440 29880 18792 16087
Std. Dev. Length of Edge 21175 166824 161757 168058 14522 167691 25926 45530 22785 12822

# Triangles 26357 1251 6742 4717 1258 22709 38421 13283 23522 27596
Jaccard Index 1 0.0078 0.0118 0.0136 0.1167 0.0266 0.3615 0.1660 0.2367 0.2560

Table 1: Statistics for graphs using Virginia ZIP code data

Ground Classic Classic Classic Spatial Spatial Geosocial Geosocial Geosocial KNN
Truth ER BA WS ER WS ER BA WS

Avg. Degree 13.58 13.62 13.77 13.69 12.48 14.00 13.99 13.63 14.00 14.00
Std. Dev. Degree 8.69 3.12 11.52 2.24 4.68 1.35 4.96 4.07 3.11 3.16
Max. Degree 72.00 22.95 82.75 20.65 24.45 18.35 26.95 26.30 22.70 22.00

Radius of Gyration 11836 29287 29047 26435 9049 28719 9675 12637 7434 4401
Std. Dev Radius of Gyration 6935 6843 8267 7847 5597 7770 5505 8532 4814 970

Avg. Length of Edge 4109 13852 14036 9506 2731 12338 2842 3594 2462 2068
Std. Dev. Length of Edge 3968 9930 10414 9008 3018 9951 3049 4587 2345 1333

# Triangles 3074 401 1606 900 2491 3251 3176 2075 3687 4597
Jaccard Index 1 0.0163 0.0317 0.0643 0.2814 0.0295 0.2861 0.1179 0.1880 0.2038

Table 2: Statistcs for graphs using Fairfax Census Tract data

4 EXPERIMENTAL EVALUATION
This section provides qualitative and quantitative experimental
evaluations showing that our three proposed synthetic geosocial
network generators are able to produce networks that are more sim-
ilar to real-world networks than existing solutions. In Section 4.1
we first provide additional details on two real-world datasets that
were used for this study: Human mobility data and social connect-
edness data. Then, Section 4.2 provides a more detailed qualitative
evaluation of visualizations of the generated geosocial networks
and Section 4.3 provides a quantitative evaluation by comparing
network measures and statistics between the generated geosocial
networks and the real-world geosocial networks.

4.1 Datasets
To evaluate the similarity between generated geosocial networks to
real-world data, and to show that our proposed geosocial networks
can be used as a proxy in lieu of real-world data, we used two
different types of real-world geosocial network data. Both datasets
delineate geographic space into administrative units that contain
a population. The first dataset delineates space into census tracts
for the study region of Fairfax County, VA, USA. Each census tract
can be abstracted to a node in the network where the node’s spatial
properties, latitude and longitude, correspond to the census tract’s
center of population. To create the ground truth graph depicted
in 6b, we used human mobility data from SafeGraph [17], and
connected each census tract to the seven other census tract for

which it had the highest estimated population flows between for
the date 1/4/2020 to estimate geosocial connections between census
tracts in Fairfax county. This resulted in an average degree of 14.
Thus, the geospatial network derived from this dataset is composed
of nodes corresponding to the population centroid of census tracts
and edges that correspond to a high estimated population flow
between the nodes.

The second dataset delineates geographic space based on ZIP
codes for Virginia USA. We leverage data provided by Facebook
Data for Good, referred to as the Social Connectedness Index [4].
The dataset provides a measure of social connectness between all
pairs of ZIP codes. We connect each ZIP code to the ten other ZIP
codes with which it had the highest Social Connectedness Index.
The resulting network is depicted in Figure 1, and has an average
degree of 20.

4.2 Qualitative Evaluation
In this section we qualitatively/visually compare our proposed syn-
thetic geosocial network generation models to both the classical
(non-spatial) social network models and the existing spatial net-
work models. To qualitatively evaluate the graphs we generate all
networks in a way that they have a similar average degree. For
graphs using the Virginia ZIP code data the average degree was set
to 20. An average degree of 20 was chosen because it created graphs
that were dense enough that clustering can be observed. For graphs
generated using the Fairfax Census Tract data, the average degree
was chosen to be 14. Similarly, the average degree of 14 was chosen
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(a) Geosocial Erdős-Rényi graph with Fairfax
Census Tract data

(b) Graph generated from mobility data
from [17] (c) KNN graph with Fairfax Census Tract data

Figure 6: Graphs using Fairfax Census Tract data

so that clustering could be seen in the figures that are included.
For the spatial and geosocial graphs, the alpha value was set to
𝛼 = 3 so all the graphs would have a similar degree of clustering.
This value was chosen so that graphs would have more clustering,
as lower alpha values lead to graphs that are more random. Much
like the geosocial Erdős-Rényi graph in Figure 5a, the graph gener-
ated from Facebook data in Figure 1 has regions that appear dark,
where clusters of nodes are densely connected. However, while
both graphs are visually dark in the northeast region of the graph,
we visually observe that the southwest region is more connected
in the graph generated from the Facebook data than the geosocial
Erdős-Rényi graph in figure 5a is. Additionally, there is a section
in the northern region of the Facebook graph that has very few
connections across this area and is very sparse. This is slightly repli-
cated in the geosocial Watts-Strogatz graph in figure 5c, but the
same area in the geosocial Watts-Strogatz graph is not as long or as
sparsely connected as it is in the Facebook graph. None of the other
graphs replicate this area. We believe that it may be caused by the
Appalachian mountains and Shenandoah National Park, which are
in this area. Because the area is mountainous and heavily wooded
due to it being a national park, it is sparsely populated and difficult
to travel through. Thus, people who live on either side of this re-
gion would not interact much, and there are very few connections
across this region. All of the graphs generated from the classical
social network models and the spatial Watts-Strogatz graph are
very dark and have long edges that reach across the graph. This
is because the distance between nodes are not taken into account
when the graph is being generated, so they look very random. The
spatial Erdős-Rényi graph has some clusters, but the clusters in the
geosocial Erdős-Rényi graph are more defined. The graph generated
from the mobility data in [17] has dark clusters where nodes are
highly connected, but also has some long edges that stretch across
the graph. This is similar to the geosocial Barabassi-Albert graph,
where there are some clusters but also long edges that are connected
to nodes with a high degree. The geosocial Watts-Strogatz graph
looks very similar to the KNN graph which connects each node to
exactly their 𝑘 (spatially) nearest neighbors, which makes sense
as the Watts-Strogatz graph starts as a KNN graph but becomes
more random as nodes are rewired. Clustering can also be seen in
the geosocial Erdős-Rényi graph, in Figure 6a, when it is used with

Fairfax Census Tract data. When compared to the graph generated
from mobility data from [17] in Figure 6b, clustering can be seen in
many of the same places. The KNN graph generated from Fairfax
Census Tract data in Figure 6c also has similar clustering when
compared to these graphs, but the geosocial Erdős-Rényi graph has
some longer random edges that make it more similar to the graph
generated from the mobility data.

4.3 Quantitative Evaluation
For our quantitative evaluation, we used the same setting having
𝛼 = 3.0 and set the average degree so that all of the graphs using
the same location data have a similar number of edges and could be
compared to each other. The exception to this is the Erdős-Rényi
model, which does not have a parameter to change the density of the
graph, and thus has a lower degree than the other graphs using the
same datasets. The spatial Barabási-Albert graph is not included in
Tables 1 and 2 because it did not terminate. For the Watts-Strogatz
graphs, probability that nodes would rewire was set to the inverse
of half of the desired average degree, so that each node had the
probability of having one of its edges rewired. Each statistic in the
table is the average of twenty trials. The average radius of gyration
(the maximum distance of a node to its neighbors) [14], standard
deviation of radius of gyration, average distance between connected
nodes (labeled average length of edge in 1 and 2), and standard
deviation of the distance between connected edges (labeled stan-
dard deviation of length of edge in 1 and 2) are all measured in
meters. The radius of gyration was calculated by taking the average
of the maximum length in meters between two connected nodes
for each node in the graph. For the graphs generated with Virginia
ZIP code data, all of the average degrees are around 20, except for
that of the spatial Erdős-Rényi graph. The standard deviation of
degree of the classical Barabási-Albert graph is very high relative
to the other graphs, which is to be expected as nodes that have
many connections are likely to gain more connections. We believe
the reason the standard deviation of the degree in the geosocial
Barabási-Albert graph is not as high is because the node order be-
gins in the southwest of the graph, where nodes are more sparse,
and thus the two components that decide if a node becomes con-
nected to another work against each other. Because the node order
begins in the southwest, those nodes are likely to gain connections
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because they already have many connections, but nodes that are not
well connected but that are closer to another nodes are also likely
to gain connections. This leads to a lower standard deviation of
degree. One might expect that the standard deviation of degree for
the KNN graph should be zero, as each node has ten outgoing edges.
However, the number of incoming edges (which is the number of
reverse nearest neighbors) is not constant and may vary depending
on the local density of a node. Thus, some nodes may have more
or less than 20 neighbors. We also measured the maximum degree
which, to be realistic, should not exceed a reasonable number [8, 13].
The geosocial Erdős-Rényi graph had a very high maximum degree,
most likely due to dense clusters where many nodes are very close
to each other. The radius of gyration for the classical graphs is very
high, as these graphs have long edges that reach across the graph.
Thus the average distance between connected nodes is also very
high for these graphs. The graph that had a radius of gyration most
similar to that of the graph generated with Facebook data was the
geosocial Erdős-Rényi graph. When using Virginia ZIP code data,
the geosocial Erdős-Rényi graph overestimated the radius of gyra-
tion, but when Fairfax Census Tract data was used, the geosocial
Erdős-Rényi graph underestimated the radius of gyration. All of
the classic graphs and the spatial Watts-Strogatz graphs had very
long distances between connected nodes as all of these graphs are
quite random and have long edges that stretch across the graph.
The geosocial Watts-Strogatz graph had the average edge length
that was closest to the ground truth, but the geosocial Erdős-Rényi
graph was also close to the ground truth. The KNN graph had a
very low radius of gyration and average edge length, which makes
sense because by definition a KNN graph has the smallest total
length of edges possible for a set degree. The geosocial Erdős-Rényi
graph and the geosocial Barabási-Albert graph had a higher and
lower number of triangles than the ground truth, while both spatial
Watts-Strogatz and the KNN network had similar numbers to the
ground truth, indicating a similar level of clustering. Because all
of these graphs have the same nodes, we were able to measure the
Jaccard index of the edges for these graphs. The graph with the
highest Jaccard index was the geosocial Erdős-Rényi graph. All
of the geosocial graphs and the KNN network had higher Jaccard
indexes than the other graphs. The spatial Erdős-Rényi graph did
not have an especially low Jaccard index, but the average degree
of this graph is so low that it cannot be compared to the other
graphs. For the graphs generated with Fairfax Census Tract data,
all of the graphs had an average degree of around 14, except for
the Spatial Erdős-Rényi graph, which is due to the fact the average
degree of the graph cannot be changed without changing the alpha
value. The mobility graph had a very high maximum degree, which
surpassed all the other graphs except for the classic Barabási-Albert
graph. The geosocial Barabási-Albert and Erdős-Rényi graphs had
the radius of gyration closest to that of the graph generated from
the mobility data. These graphs also had the closest average length
of connected edges to the graph generated from the mobility data.
The geosocial Erdős-Rényi graph had the closest number of tri-
angles to the ground truth. The geosocial Erdős-Rényi graph had
the highest Jaccard index. The spatial Erdős-Rényi graph had the
second highest Jaccard index, but that may be due to the fact that
the average degree in that graph is lower than the others.

5 CONCLUSIONS, AND FUTUREWORK
As we noted in at the start of the paper, generating synthetic social
networks is an important task for many problems that study hu-
mans, their behavior, and their interactions. However, until now
many models used to generate such networks do not consider loca-
tion when making new links and those that do assume a uniform
distribution of the populationwhichwewould argue is not often the
case in reality. To overcome this issue, we have proposed geosocial
extensions to three widely used network models (i.e., Erdős-Rényi,
Watts-Strogatz, and Barabási-Albert) which specifically includes
location information in the social link generation process. Not only
do we describe implementations of these networks (Section 3), but
our results look similar to what one finds in reality. For example,
our updated geosocial Erdős-Rényi graph looks more similar to
the ground truth graphs generated from data from Facebook and
human mobility data. The features, such as radius of gyration and
average distance between connected nodes, were more similar to
those of the ground truth when compared against other graphs
which have the same nodes and a similar number of edges. The
geosocial Erdős-Rényi graph also had the highest Jaccard index
when compared with both ground truth graphs.

However, while the graph generated from Facebook data has
an area with very few connections across it in the middle of the
northern region, none of the generated geosocial graphs have this
sparse region. We hypothesize that the reason for this sparse area
is the Appalachian mountains, which are forested, difficult to cross
and have a low population count. Future work needs to explore
how instead of using the flat Euclidean distances between nodes,
using the actual topographical distances may lead to increased
accuracy. Another area of further work is to apply our geosocial
methods to other areas in order to see what other differences emerge
and explore why this might be the case. With this being said, this
paper paves the way for creating a new way to generate synthetic
geosocial networks that consider individuals’ social relationships
and their locations.
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