
Tile Matching
Memory Game
Ashlee Stone and Ketevan Gallagher

Project Description
Our project is a tile matching game!

To play the game:
1. Select a tile, and flip it!
2. Select another tile and flip!
3. The two tiles get compared

a. They stay flipped for only half a second if they donʼt match!
b. If they do match they stay on

4. Repeat until all are matched!

The lower your score, the better!

Project Description
Game controls:
● KEY0] to reset the game and VGA
● KEY1] to start the game from the menu state
● Arrow keys to move between tiles

○ They wrap around the 44 grid
● Spacebar to flip over a tile

Display:
● Tiles shown on the VGA in a 44 grid
● HEX0 shows the game mode
● HEX4 and HEX5 show the playerʼs score in decimal

High Level Block Diagram

Game Mode FSM

Gmenu
hex0hldr = 4ʼb0000

ingameOn = 0

Gingame
hex0hldr = 4ʼb0001

ingameOn = 1

Gendgame
hex0hldr = 4ʼb0010

ingameOn = 0

Quit

Begin == 1 gameOver == 1

In Game Mode FSM

Not In
Game

Score = 0,
hexes off

Select
State

Current tile
select bit = 1

Past tile
select bit = 0

Flip
Current tile flip bit
= 1
If sec flag,
compare A =
current tile, else
compare B = tile

Wait 0.5
seconds)

Run half
second
counter

Compare
Check if compareA

== compareB
If not match, flip

over. else,
score=score+1 and

check if all
matched

Game
Over

Begin == 1 Space == 1 counter
pulse == 1Second flag == 1 All matched == 1

Quit == 1
Second flag == 0

All matched == 0

Tile Generator

Tile flag on, tile
counter =
corresponding
tile #
Tile flag off

X, Y within
range of tiles

0
1

vga_R vga_G vga_B

Pixel
Clock

0 1
1 0
0 0

Tile Color
from RAM

00000000
10000000 0

1

Flipped Selected Tile flag

 11111111

Final pixel color

RAM Module

Pixel
Clock

Address C

Read C

CLOCK_50 Write A

Reset tile ram
to initial

Tile ram
has no
change

User quits

1
0

CLOCK_50

Address A
Read A

Donʼt write
to Tile ram

Address A

Write
enable

0
1

Write and Read blocks
repeated for Read B, Write
B, Address B

FPGA Display
7 segment

HEX decoder HEX0

7 segment
HEX decoder HEX1

HEX2

HEX3

7 segment
HEX decoder HEX4

7 segment
HEX decoder HEX5

4ʼb1111

Decimal Conversion
Module:

…

…

deci5

deci4

Decimal
Conversion

Module

hex4hldr
hex5hldr

deci4

deci5

bi4 bi5

bi4 bi5hex0hldr

1
0

1
0

1
0

1
0

Default
value

4ʼb0000

Default
value

4ʼb0000

…

4ʼb1111

4ʼb1111

Project Pictures

Project Pictures

Project Pictures

Bugs and Fixes
● Game would not correctly

change states when using
inputs directly from the FPGA
board
→ The switches and keys

could not be pressed fast
enough

→ Inputs would trigger twice
→ Worked in ModelSim due to

non-manual toggling
→ Switched to PS2 input

where the signal only
triggers once then goes off

Bugs and Fixes
● Grey highlight stayed when tiles unflipped

→ Change select bit to zero when flip bit changes to zero

Bugs and Fixes
● Score wasnʼt showing up in

Game Over state
→ Jumped to the NotInGame

state from SelectState
after end of game

→ Tested for error by adding
values on the HEX displays
in all in-game states

→ Added an extra check in
SelectState

Bugs and Fixes

● First pair of tiles matched didnʼt show color of second selected
tile
→ Set counter value and pulse from the counter in initial block

Future Work
● Fixing sticky keys
● Not allowing the user to select

previously selected tiles
● Adding a randomizer to the tile

positions

Demo Time!

Project Distribution
Ketevan

● Design for In-Game
FSM

● Tile generation and
VGA display

● In-Game debugging
● RAM module
● Top level module
● Presentation Slides
● Final block diagrams

(tile generator, RAM,
In-Game FSM

● Game Mode FSM
● PS2 Controls
● FPGA Display
● In-Game FPGA

version)
● In-Game debugging
● Top level module
● Presentation slides
● Final block diagrams

(game mode FSM,
FPGA display)

Ashlee

CREDITS This presentation template was created by
Slidesgo, and includes icons by Flaticon, and

infographics & images by Freepik

Thank you!

https://bit.ly/3A1uf1Q
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr

