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Project Description
Our project is a tile matching game!

To play the game:
1. Select a tile, and flip it!
2. Select another tile and flip!
3. The two tiles get compared

a. They stay flipped for only half a second if they donʼt match!
b. If they do match they stay on

4. Repeat until all are matched!

The lower your score, the better!



Project Description
Game controls:
● KEY0] to reset the game and VGA
● KEY1] to start the game from the menu state
● Arrow keys to move between tiles

○ They wrap around the 44 grid
● Spacebar to flip over a tile

Display:
● Tiles shown on the VGA in a 44 grid
● HEX0 shows the game mode
● HEX4 and HEX5 show the playerʼs score in decimal



High Level Block Diagram



Game Mode FSM
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In Game Mode FSM
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Tile Generator

Tile flag on, tile 
counter = 
corresponding 
tile #
Tile flag off

X, Y within 
range of tiles

0
1

vga_R vga_G vga_B

Pixel 
Clock

0    1
1     0
0    0

Tile Color 
from RAM

00000000
10000000 0

1

Flipped Selected Tile flag

     11111111

Final pixel color



RAM Module
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FPGA Display
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Project Pictures



Project Pictures
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Bugs and Fixes
● Game would not correctly 

change states when using 
inputs directly from the FPGA 
board
→ The switches and keys 

could not be pressed fast 
enough

→ Inputs would trigger twice
→ Worked in ModelSim due to 

non-manual toggling
→ Switched to PS2 input 

where the signal only 
triggers once then goes off



Bugs and Fixes
● Grey highlight stayed when tiles unflipped

→ Change select bit to zero when flip bit changes to zero



Bugs and Fixes
● Score wasnʼt showing up in 

Game Over state
→ Jumped to the NotInGame 

state from SelectState 
after end of game

→ Tested for error by adding 
values on the HEX displays 
in all in-game states

→ Added an extra check in 
SelectState



Bugs and Fixes

● First pair of tiles matched didnʼt show color of second selected 
tile
→ Set counter value and pulse from the counter in initial block



Future Work
● Fixing sticky keys
● Not allowing the user to select 

previously selected tiles
● Adding a randomizer to the tile 

positions



Demo Time!



Project Distribution
Ketevan

● Design for In-Game 
FSM

● Tile generation and 
VGA display

● In-Game debugging
● RAM module
● Top level module
● Presentation Slides
● Final block diagrams 

(tile generator, RAM, 
In-Game FSM

● Game Mode FSM
● PS2 Controls
● FPGA Display
● In-Game FPGA 

version)
● In-Game debugging
● Top level module
● Presentation slides
● Final block diagrams 

(game mode FSM, 
FPGA display)

Ashlee



CREDITS This presentation template was created by 
Slidesgo, and includes icons by Flaticon, and 

infographics & images by Freepik 

Thank you!

https://bit.ly/3A1uf1Q
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr

